Преимущества и недостатки галогенных ламп

Преимущество галогенных лампочек — в повышенной светоотдаче при том же расходе электроэнергии.

В спектре этих источников света действительно присутствуют УФ-лучи. Галогенные лампы даже рекомендуют для восполнения недостатка естественного освещения при выращивании растительных культур. Известен случай, когда в бутике платье на манекене освещали галогенной лампой, и через два месяца образовалось “выгоревшее” пятно.

Галогенные лампы излучают приятный белый свет с цветовой температурой до 3200 К и отличной цветопередачей.

Свет, который они излучают, ближе света всех иных ламп к солнечному. Их малые размеры, почти миниатюрность, позволяют создавать совершенно новые светильники, например так называемого акцентирующего освещения, – специально сконструированная система отражателя позволяет настолько усилить поток света, что это дает дизайнерам дополнительные возможности в оформлении помещения.

По сравнению с обычными лампами накаливания галогенные имеют световую отдачу 13-25 лм/Вт, высокий ресурс службы и лучшую стабильность светового потока.

Миниатюрные размеры галогенных ламп эстетически более привлекательны (у низковольтных галогенных ламп (12 В, 100 Вт) диаметр колбы в 5 раз меньше, чем у ламп накаливания той же мощности). Не случайно сегодня именно низковольтные галогенные лампы используют для подсветки стеллажей, полок, различных элементов интерьера. Все предметы выглядят нарядными, объемными, а их цвета становятся сочнее и ярче; подчеркивается блеск стекла и металла. Кроме этого галогенные лампы на 12 В полностью электробезопасны.

Ассортимент галогенных лампочек гораздо богаче обычных.

Производимые сегодня галогенные лампы очень разнообразны и многофункциональны (линейные, капсульные, рефлекторные и т. д.), что дает возможность находить такое световое решение, которое требуется помещению в каждом конкретном случае..

Основными преимуществами галогенных ламп по сравнению с лампами накаливания:

  • 1. галогенные лампы бoлee эффeктивнo пpeoбpазуют энepгию,
  • 2. имeют в несколько pаз бoльший cpoк cлужбы,
  • 3. пpoизвoдят бoлee яpкий бeлый cвeт,
  • 4. более качественно передают цвета освещаемых предметов,
  • 5. выпускаются в более богатом ассортименте,
  • 6. пoзвoляют лучшe упpавлять cвeтoвым пучкoм и напpавлять eгo c бoльшeй тoчнocтью,
  • 7. бoлee кoмпактны, благoдаpя чeму coздаютcя нoвыe вoзмoжнocти дизайна.

Основной недостаток — в смещении спектра в синюю область. У них свет «белее», чем у ламп накаливания, причем с некоторым количеством ультрафиолета. Если он падает на вещь, окрашенную нестойкой к свету краской, то выгорает она значительно быстрее, чем от обычных ламп, — это надо учитывать.

Еще статьи по данной теме:

Что нужно знать

Галогеновые лампы всех разновидностей представляют собой доработанный вариант старых лампочек накаливания. Отличием от них является добавление в конструкцию изделия специальной колбы, заполненной парами брома или йода. Такая конструкция позволила в разы повысить продолжительность службы. Кроме того, это улучшило и другие показатели:

  • мощность и яркость;
  • цветовая температура;
  • свет, который излучает лампочка, стал цветным. Особенно это заметно для металлогалегенных моделей. Здесь возможен не только белый свет, но и другие сочетания;

Металлогалогенная лампа

энергоэффективность.

Также для металлогалогенных и других видов галогеновых лампочек характерны следующие преимущества:

  • маленькие размеры и компактность;
  • цветовая температура, находящаяся на достаточно нормальном уровне. Накал спирали может достигать 3000°К. Цветовая температура такого источника света наиболее оптимально для человеческого глаза;
  • надежность и длительный срок эксплуатации. Максимальный срок работы характерен для металлогалогенных лампочек (почти 12000 часов), в то время как галогеновые могут работать до 4000 часов;
  • доступность, хотя цена на такую продукцию (особенно для металлогалогенных моделей) будет выше старых аналогов.

К недостаткам таких ламп можно отнести:

  • пожароопасность в связи с нагретой колбой;
  • отсутствие защиты от жировых загрязнений;
  • несколько сложная схема подключения, которая зависит от типа изделия. В большинстве случаев установка требует наличие блока питания.

Несмотря на недостатки галогеновые лампочки пользуются сегодня огромной популярностью. Особенно это касается металлогалогенных моделей.

Production

Approximately six million metric tons of the fluorine mineral fluorite are produced each year. Four hundred-thousand metric tons of hydrofluoric acid are made each year. Fluorine gas is made from hydrofluoric acid produced as a by-product in phosphoric acid manufacture. Approximately 15,000 metric tons of fluorine gas are made per year.

The mineral halite is the mineral that is most commonly mined for chlorine, but the minerals carnallite and sylvite are also mined for chlorine. Forty million metric tons of chlorine are produced each year by the electrolysis of brine.

Approximately 450,000 metric tons of bromine are produced each year. Fifty percent of all bromine produced is produced in the United States, 35% in Israel, and most of the remainder in China. Historically, bromine was produced by adding sulfuric acid and bleaching powder to natural brine. However, in modern times, bromine is produced by electrolysis, a method invented by Herbert Dow. It is also possible to produce bromine by passing chlorine through seawater and then passing air through the seawater.

In 2003, 22,000 metric tons of iodine were produced. Chile produces 40% of all iodine produced, Japan produces 30%, and smaller amounts are produced in Russia and the United States. Until the 1950s, iodine was extracted from kelp. However, in modern times, iodine is produced in other ways. One way that iodine is produced is by mixing sulfur dioxide with nitrate ores, which contain some iodates. Iodine is also extracted from natural gas fields.

Even though astatine is naturally occurring, it is usually produced by bombarding bismuth with alpha particles.

Tennessine is made by fusing berkelium-249 and calcium-48.

From left to right: chlorine, bromine, and iodine at room temperature. Chlorine is a gas, bromine is a liquid, and iodine is a solid. Fluorine could not be included in the image due to its high reactivity, and astatine and tennessine due to their radioactivity.

Общая характеристика

Галогены образуют двухатомные молекулы (вида Х2, где Х обозначает атом галогена) – устойчивую форму существования галогенов в виде свободных элементов. Связи этих двухатомных молекул являются неполярными, ковалентными и одинарными. Химические свойства галогенов позволяют им легко вступать в соединение с большинством элементов, поэтому они никогда не встречаются в несвязанном виде в природе. Фтор – наиболее активный галоген, а астат – наименее.

Все галогены образуют соли I группы с похожими свойствами. В этих соединениях галогены присутствуют в виде галоидных анионов с зарядом -1 (например, Cl-, Br-). Окончание -ид указывает на наличие галогенид-анионов; например Cl- называется «хлорид».

Кроме того, химические свойства галогенов позволяют им действовать в качестве окислителей – окислять металлы. Большинство химических реакций, в которых участвуют галогены – окислительно-восстановительные в водном растворе. Галогены образуют одинарные связи с углеродом или азотом в органических соединениях, где степень их окисления (СО) равна -1. Когда атом галогена замещён ковалентно-связанным атомом водорода в органическом соединении, префикс гало- может быть использован в общем смысле, или префиксы фтор-, хлор-, бром- , йод- – для конкретных галогенов. Галогенные элементы могут иметь перекрёстную связь с образованием двухатомных молекул с полярными ковалентными одинарными связями.

Хлор (Cl2) стал первым галогеном, открытым в 1774 г., затем были открыты йод (I2), бром (Br2), фтор (F2) и астат (At, обнаружен последним, в 1940 г.). Название «галоген» происходит от греческих корней hal- («соль») и -gen («образовывать»). Вместе эти слова означают «солеобразующий», подчёркивая тот факт, что галогены, вступая в реакцию с металлами, образуют соли. Галит – это название каменной соли, природного минерала, состоящего из хлорида натрия (NaCl). И, наконец, галогены используются в быту – фторид содержится в зубной пасте, хлор обеззараживает питьевую воду, а йод содействует выработке гормонов щитовидной железы.

Принцип работы галогенных ламп

Рассмотрим подробно принцип работы галогенных ламп. Они работают практически так же, как и обыкновенные модели ламп накаливания. У традиционного варианта огромная матовая стеклянная колба. Она наполнена смесью различных газов, в основном это азот, аргон или сразу оба данных элемента. В центральной части находится вольфрамовая нить, через которую нагревается лампа до 2 500 °C. Такая высокая температура способствует созданию свечения. Все белые области, среди которых вольфрам, во время накаливания могут светиться белым цветом, однако с помощью колбы освещение получается холодным или теплым.

Галогеновая лампа

Подключение

Способ подключения определяется типом лампочки. Рассмотрим каждый вариант в отдельности.
Подключение источника света с низким напряжением требует наличия в схеме такого устройства, как блок питания. Он будет играть роль устройства для нивелирования перепада напряжения.

Схема подключения

Блок питания или понижающий трансформатор в данном случае являются обязательным компонентом. При этом блок питания будет выступать и в роли трансформатора и в роли стабилизатора напряжения. Так вы избежите ситуации, когда будет повышаться температура переходной аппаратуры. Само подключение светильников происходит очень просто – достаточно их подсоединить параллельно друг к другу
Подключение источника света с высоким напряжением осуществляется еще проще. Здесь подключение проводится в распределительной коробке. При этом следует помнить, что фаза питания провода, подходящего к коробке должна идти на выключатель. В результате управлять освещением можно при помощи стандартного выключателя, который подключают на стороне 220 В к трансформатору. Нулевую жилу подключают к аналогичным проводам трансформатора. Затем фазный переход, который пришелся на выключатель, подключаем к аналогичным (фазным) проводам на трансформаторе. Чтобы подключить провода в самом трансформаторе надлежит использовать специальные клеммы N и L.Для металлогалогенных лампочек схема подключения имеет схожий принцип.
Однако, кроме этих двух вариантов, существуют ситуации, когда нужно подключить не один, а сразу несколько осветительных приборов. В таком случае следует использовать несколько блоков питания или трансформаторов.
Электрики рекомендуют применять пару блоков питания небольшой мощности, чем один большой. Так вы избежите ситуации, когда температура трансформатора будет постоянно повышаться. Наличие такой ситуации опасно тем, что некоторые элементы сети могут не выдержать напряжения, что приведет к пожароопасной обстановке.

Схема подключения нескольких ламп

Здесь не играет особой роли количество подключаемых трансформаторов или блоков питания

Единственным, на что следует обратить здесь внимание – каждый трансформатор должен быть подключен отдельным проводом к распределительной коробке. И помните, что при наличии большого числа лампочек, следует применять специальные клеммные соединения.
Использование таких типов источников света позволит вам создать в доме не только общее освещение, но и сделать декоративную подсветку в любом помещении и даже на улице

Но помните, что главным залогом красивого освещения является правильное подключение всех осветительных приборов. Зная все это, вы без особых проблем подберете себе в дом нужный тип галогеновой лампы и сможете правильно ее подключить.

IRC-галогенные лампы

Новым направлением развития ламп является так называемые IRC-галогенные лампы (сокращение «IRC» обозначает «инфракрасное покрытие»). На колбы таких ламп наносится специальное покрытие, которое пропускает видимый свет, но задерживает инфракрасное (тепловое) излучение и отражает его назад, к спирали.

За счёт этого уменьшаются потери тепла и, как следствие, увеличивается эффективность (КПД) лампы. По данным фирмы OSRAM потребление энергии снижается на 45 %, а срок службы удваивается (по сравнению с обычной галогенной лампой).

Такая галогенная лампа мощностью 65 Вт даёт световой поток 1700 лм, то есть имеет световую отдачу 26 лм/Вт. Это примерно вдвое меньше световой отдачи компактной люминесцентной лампы мощностью 30 Вт (1900 лм), требующейся для создания аналогичного светового потока, и вдвое больше световой отдачи простой лампы накаливания.

На сегодняшний день существует несколько альтернатив привычным и хорошо знакомым всем лампам накаливания – энергосберегающие, светодиодные, галогенные.

У каждой из них свой принцип работы, потребление энергии, светоотдача, свои достоинства и недостатки. Предлагаем вам сравнить светодиодные и галогенные лампы по основным критериям – возможно, это поможет вам определиться с выбором.

будут ли победители в этом споре?

Почему СО фтора всегда -1

Электроотрицательность увеличивается с ростом периода. Поэтому фтор имеет самую высокую электроотрицательность из всех элементов, что подтверждается его положением в периодической таблице. Его электронная конфигурация 1s2 2s2 2p5. Если фтор получает еще один электрон, крайние р-орбитали полностью заполнены и составляют полный октет. Поскольку фтор имеет высокую электроотрицательность, он может легко отобрать электрон у соседнего атома. Фтор в этом случае изоэлектронен инертному газу (с восемью валентными электронами), все его внешние орбитали заполнены. В таком состоянии фтор гораздо более стабилен.

Химические элементы

Фтор – элемент с атомным номером 9, обозначается символом F. Элементарный фтор впервые был обнаружен в 1886 г. путем выделения его из плавиковой кислоты. В свободном состоянии фтор существует в виде двухатомной молекулы (F2) и является наиболее распространенным галогеном в земной коре. Фтор – наиболее электроотрицательный элемент в периодической таблице. При комнатной температуре является бледно-жёлтым газом. Фтор также имеет относительно небольшой атомный радиус. Его СО – -1, за исключением элементарного двухатомного состояния, в котором его степень окисления равна нулю. Фтор чрезвычайно химически активен и непосредственно взаимодействует со всеми элементами, кроме гелия (He), неона (Ne) и аргона (Ar). В растворе H2O, плавиковой кислоты (HF) является слабой кислотой. Хотя фтор сильно электроотрицателен, его электроотрицательность не определяет кислотность; HF является слабой кислотой в связи с тем, что ион фтора основной (рН> 7). Кроме того, фтор производит очень мощные окислители. Например, фтор может вступать в реакцию с инертным газом ксеноном и образует сильный окислитель дифторид ксенона (XeF2). У фтора множество применений.

Хлор – элемент с атомным номером 17 и химическим символом Cl. Обнаружен в 1774 г. путём выделения его из соляной кислоты. В своём элементарном состоянии он образует двухатомную молекулу Cl2. Хлор имеет несколько СО: -1, +1, 3, 5 и 7. При комнатной температуре он является светло-зеленым газом. Так как связь, которая образуется между двумя атомами хлора, является слабой, молекула Cl2 обладает очень высокой способностью вступать в соединения. Хлор реагирует с металлами с образованием солей, которые называются хлориды. Ионы хлора являются наиболее распространенными ионами, они содержатся в морской воде. Хлор также имеет два изотопа: 35Cl и 37Cl. Хлорид натрия является наиболее распространенным соединением из всех хлоридов.

Бром – химический элемент с атомным номером 35 и символом Br. Впервые был обнаружен в 1826 г. В элементарной форме бром является двухатомной молекулой Br2. При комнатной температуре представляет собой красновато-коричневую жидкость. Его СО – -1, + 1, 3, 4 и 5. Бром более активен, чем йод, но менее активен, чем хлор. Кроме того, бром имеет два изотопа: 79Вг и 81Вг. Бром встречается в виде солей бромида, растворённых в морской воде. За последние годы производство бромида в мире значительно увеличилось благодаря его доступности и продолжительному времени жизни. Как и другие галогены, бром является окислителем и очень токсичен.

Йод – химический элемент с атомным номером 53 и символом I. Йод имеет степени окисления: -1, +1, +5 и +7. Существует в виде двухатомной молекулы, I2. При комнатной температуре является твёрдым веществом фиолетового цвета. Йод имеет один стабильный изотоп — 127I. Впервые обнаружен в 1811 г. с помощью морских водорослей и серной кислоты. В настоящее время ионы йода, могут быть выделены в морской воде. Несмотря на то что йод не очень хорошо растворим в воде, его растворимость может возрасти при использовании отдельных йодидов. Йод играет важную роль в организме, участвуя в выработке гормонов щитовидной железы.

Астат – радиоактивный элемент с атомным номером 85 и символом At. Его возможные степени окисления: -1, +1, 3, 5 и 7. Единственный галоген, не являющийся двухатомной молекулой. В нормальных условиях является металлическим твёрдым веществом чёрного цвета. Астат является очень редким элементом, поэтому о нём известно немного. Кроме того, астат имеет очень короткий период полураспада, не дольше нескольких часов. Получен в 1940 г. в результате синтеза. Полагают, что астат похож на йод. Отличается металлическими свойствами.

В таблице ниже показано строение атомов галогенов, структура внешнего слоя электронов.

Галоген Конфигурация электронов
Фтор 1s2 2s2 2p5
Хлор 3s2 3p5
Бром 3d10 4s2 4p5
Иод 4d10 5s2 5p5
Астат 4f14 5d10 6s2 6p5

Подобное строение внешнего слоя электронов обусловливает то, что физические и химические свойства галогенов похожи. Вместе с тем при сопоставлении этих элементов наблюдаются и различия.

Toxicity

The halogens tend to decrease in toxicity towards the heavier halogens.

Fluorine gas is extremely toxic; breathing in fluorine at a concentration of 25 parts per million is potentially lethal. Hydrofluoric acid is also toxic, being able to penetrate skin and cause highly painful burns. In addition, fluoride anions are toxic, but not as toxic as pure fluorine. Fluoride can be lethal in amounts of 5 to 10 grams. Prolonged consumption of fluoride above concentrations of 1.5 mg/L is associated with a risk of dental fluorosis, an aesthetic condition of the teeth. At concentrations above 4 mg/L, there is an increased risk of developing skeletal fluorosis, a condition in which bone fractures become more common due to the hardening of bones. Current recommended levels in water fluoridation, a way to prevent dental caries, range from 0.7 to 1.2 mg/L to avoid the detrimental effects of fluoride while at the same time reaping the benefits. People with levels between normal levels and those required for skeletal fluorosis tend to have symptoms similar to arthritis.

Chlorine gas is highly toxic. Breathing in chlorine at a concentration of 3 parts per million can rapidly cause a toxic reaction. Breathing in chlorine at a concentration of 50 parts per million is highly dangerous. Breathing in chlorine at a concentration of 500 parts per million for a few minutes is lethal. Breathing in chlorine gas is highly painful.

Pure bromine is somewhat toxic, but less toxic than fluorine and chlorine. One hundred milligrams of bromine is lethal. Bromide anions are also toxic, but less so than bromine. Bromide has a lethal dose of 30 grams.

Iodine is somewhat toxic, being able to irritate the lungs and eyes, with a safety limit of 1 milligram per cubic meter. When taken orally, 3 grams of iodine can be lethal. Iodide anions are mostly nontoxic, but these can also be deadly if ingested in large amounts.

Astatine is very radioactive and thus highly dangerous, but it has not been produced in macroscopic quantities and hence it is most unlikely that its toxicity will be of much relevance to the average individual.

Applications

Disinfectants

Both chlorine and bromine are used as disinfectants for drinking water, swimming pools, fresh wounds, spas, dishes, and surfaces. They kill bacteria and other potentially harmful microorganisms through a process known as sterilization. Their reactivity is also put to use in bleaching. Sodium hypochlorite, which is produced from chlorine, is the active ingredient of most fabric bleaches, and chlorine-derived bleaches are used in the production of some paper products. Chlorine also reacts with sodium to create sodium chloride, which is table salt.

Lighting

Halogen lamps are a type of incandescent lamp using a tungsten filament in bulbs that have a small amounts of a halogen, such as iodine or bromine added. This enables the production of lamps that are much smaller than non-halogen incandescent lightbulbs at the same wattage. The gas reduces the thinning of the filament and blackening of the inside of the bulb resulting in a bulb that has a much greater life. Halogen lamps glow at a higher temperature (2800 to 3400 kelvins) with a whiter color than other incandescent bulbs. However, this requires bulbs to be manufactured from fused quartz rather than silica glass to reduce breakage.

Drug components

In drug discovery, the incorporation of halogen atoms into a lead drug candidate results in analogues that are usually more lipophilic and less water-soluble. As a consequence, halogen atoms are used to improve penetration through lipid membranes and tissues. It follows that there is a tendency for some halogenated drugs to accumulate in adipose tissue.

The chemical reactivity of halogen atoms depends on both their point of attachment to the lead and the nature of the halogen. Aromatic halogen groups are far less reactive than aliphatic halogen groups, which can exhibit considerable chemical reactivity. For aliphatic carbon-halogen bonds, the C-F bond is the strongest and usually less chemically reactive than aliphatic C-H bonds. The other aliphatic-halogen bonds are weaker, their reactivity increasing down the periodic table. They are usually more chemically reactive than aliphatic C-H bonds. As a consequence, the most common halogen substitutions are the less reactive aromatic fluorine and chlorine groups.

Чем галогенные лампы отличаются от ламп накаливания

Галогенные лампы позволили поддерживать более высокую температуру нити накаливания, что изменило длину волну испускаемого спектра и повысило эффективность ламп. Температура нити накаливания галогенных ламп составляет 2700-3000 К. Так почему нельзя брать руками галогенную лампочку, все из за тех же высоких температур работы данной лампы. При касании стекла, мы всегда оставляем отпечатки, а с ними жир грязь и так далее, что в свою очередь влияет на неравномерное распределение температуры по кварцевой  колбе галогенной лампы.

При нарушении температурного режима колба может растрескаться, тем самым галогенная лампочка естественно выйдет из строя. Данное требования по сохранении чистоты поверхности колбы лампы можно отнести и к газоразрядным лампам, но о них далее. На настоящий момент галогенные лампы самые распространенные для применения в автомобилях.

Газоразрядные лампы

рисунок 3 (Газоразрядные автомобильные лампы, ксенон)Газоразрядные лампы (рисунок 3)появились самыми последними в середине 90 годов. На вид они как и галогенный лампочки но принцип их работы совершенно другой. В колбе заполнен газ (чаще всего ксенон как недорогой и обеспечивающий работу). В ксеноне создается электрическая дуга между электродами, тем самым излучая свет.

Температура газоразрядных (ксеноновых) ламп самая высокая, настолько ,что как вы заметили если хоть раз видели свечение ксенона, излучаемый спектр в связи с высокой температурой и пониженной частотой волны имеет синий оттенок. В итоге и эффективность газоразрядных ламп в разы выше, чем у галогенных и обычных.У газоразрядных (ксеноновых) ламп кроме того есть еще и преимущества в следствии ого что здесь невозможно стрясти нить накаливания что обеспечивает ксеноновым лампам долговечность работы и надежность.

Минусами газоразрядных ксеноновых ламп является дополнительное оборудование, повышающий умножитель которых подает на лампы напряжение до 20 000 вольт необходимое для создания электрической дуги. И как нестранно плюс с минусом – это слишком высокий уровень испускаемого света, которых отрицательно сказывается на безопасности дорожного движения.

Маркировка ламп применяемых в автомобиле.

Автомобильные лампы для головного света (дальний, ближний)— H1, H2, H3, H4, H7Н1 применяются для автомобилей с раздельными фарами для дальнего и ближнего света.

BMW, ВАЗ2106Н2 предназначены для дополнительной оптикиН3 с дополнительным выводом в виде провода используются для противотуманных фар.Н4 применяются головной оптики и имеют сдвоенную спираль накаливанияН7 последний тип ламп для автомобилей выпущенных после 1995 года, для фар свободной формы.Автомобильные лампы HB — 1, 2, 3, 4  свидетельствуют об их аттестации американским стандартам.

Устанавливаются в следствии этого как правило на американские и японские автомобили. Автомобильные лампы D1 и D2 – данным индексом маркируются газоразрядные лампы.Большинство фирм производителей комплектующих для автомобиля постоянно совершенствю свою продукцию  и выпускают свои бренды — всесезонные (у Philips — Allweather), всепогодные (у Osram — All Season), долговечные (у Philips и Osram— Long Life), с увеличенной на 30% светоотдачей (у Philips — Premium, у Osram — Super) и излучающие свет с голубым оттенком (у Philips — Blue Vision, у Osram — Cool Blue, у Trifa — Xenon Blue).

Выбор автомобильных ламп для использования в автомобиле

Чтобы в последствии не возникли проблемы с лампами и автомобилем из за ламп необходимо соблюдать следующие требования:   В поликарбонатные фары должны устанавливаться лампы с фильтром ультрафиолетового спектра.

Данный спектр чрезмерно влияет на старение поликарбонатных фар, на помутнение их стекла.   Лампу лучше всего выбрать исходя из маркировки на старой лампе, а иногда данная маркировка нанесена на стекле фары, такой пример приведен на рисунке 4 (надпись halogen — означает что для применения в данной фаре рекомендована именно галогенновая лампочка);

Рисунок 4 (маркировка стекла фары рекомендующая применения галогенновой лампочки)

Запрещается дотрагиваться пальцами до стеклянной колбы лампы — остатки жира и грязи на колбе спровоцируют неравномерность ее нагрева, и ее последующее растрескивание;  Покупка ламп комплектами как правило обходится дешевле чем покупка ламп по одной  нельзя устанавливать более мощные лампы, чем рекомендованы  из-за возможного перегрева стекла фары и появления трещин, а также перегрева присоединительных колодок и проводов;  Надписи на оригинальных лампах как правило наносятся специальным оборудованием, а на подделке штампом и краской их соответственно можно стереть ногтем пальца;

Add a Comment

Ваш e-mail не будет опубликован.

Яндекс.Метрика