Два мигающих светодиодаДобавление комментария

Тестирование мигающих RGB светодиодов

Компьютерный блок питания является едва ли не идеальным вариантом для тестирования светодиодов SMD0603. В этом случае нужно просто поставить резистивный делитель.

Для этого согласно схеме из технической документации оценивают сопротивления p-n переходов в прямом направлении при помощи тестера.

Прямое измерение здесь невозможно. Вместо этого следует собрать схему, показанную на рисунке. Вот из каких соображений мы исходили, и что изображено на картинке:

Метеорит72 - лучший интернет магазин светодиодного освещения! Товары высочайшего качества, безупречный сервис, широчайший ассортимент, отличные цены, гарантия. Посмотреть продукцию >>>

  • Микросхема дана вместе с номерами ножек согласно техническим данным.
  • Питание подаётся на катод, потому что полярность напряжения отрицательная. 3,3 В как раз хватит, чтобы открыть p-n переходы.
  • Переменный резистор нужен не очень большого номинала.

У нас на рисунке установлен с максимальным пределом 680 Ом. Именно в таком положении он должен находиться изначально.

Обычно сопротивление открытого p-n перехода не очень велико, но нам нужен значительный запас, чтобы диоды не погорели (мы помним, что их максимальное прямое напряжение составляет 3 В).

Также принимается во внимание тот факт, что при низком вольтаже сопротивление каждого светодиода составит порядка 700 Ом. При параллельном включении суммарное сопротивление находится по формуле, показанной на рисунке ниже

Подставляя туда в качестве всех трех входных параметров 700, получаем 233 Ом. Это будет сопротивление наших светодиодов в тот момент, когда они только-только начнут открываться (по крайней мере, мы так полагаем).

Суть в том, что нам понадобится контролировать режим тестером (см. рисунок выше).

Для этого постоянно измеряем напряжение на светодиодной микросхеме, одновременно уменьшая значение сопротивления, пока разница потенциалов не поднимется до 2,5 В. Дальше повышать вольтаж попросту опасно, быть может, многие остановятся даже на 2,2 В.

Затем из пропорции найдём искомое сопротивление светодиодной микросхемы: (3,3 – 2,5)/2,5 = R пер / Rобщ, где R пер – сопротивление переменного резистора в тот момент, когда напряжение на дисплее тестера достигает 2,5 В. R общ = 3,125 R пер.

Провод +3,3 В на блоке питания компьютера имеет оранжевую изоляцию, а схемную землю берём с чёрного.

 Светодиодная лента  Офисные Светильники

Обратите внимание, что не нужно включать этот модуль без нагрузки. Идеально было бы на один из разъёмов подключить DVD-привод или какое-нибудь другое устройство

Допускается также просто снять боковую крышку и извлечь оттуда нужные контакты.

Подключение светодиодов иллюстрирует схема. Многие спросят – а что дальше? Измерили сопротивление на параллельное подключение светодиодов и остановились?

Поясняем: в рабочем состоянии, если светодиодов понадобится включить несколько, мы проделаем аналогичную настройку. В результате напряжение питания на микросхеме должно составить 2,5 В.

Обратите внимание, что светодиоды мигающие, поэтому показания могут быть не совсем точными

В этом случае максимальное из показаний не должно превысить 2,5 В. Ну, и, конечно, будет видно, что схема работает, потому что светодиоды начнут мигать.

Чтобы только часть из них проявляла себя в этом плане, нужно убрать питание с ненужных. Допускается также собрать отладочную схему с тремя переменными резисторами – по одному в ветвь каждого цвета.

Таким образом, мы теперь знаем, как сделать мигающую светодиодную подсветку своими руками.

А теперь многие спросят, можно ли варьировать время срабатывания.

Полагаем, что внутри все равно должны использоваться ёмкости. Быть может, это даже собственные ёмкости p-n переходов светодиодов.

Но в любом случае, подключая переменный конденсатор параллельно схеме на вход, можно попробовать что-либо изменить.

Номинал должен быть очень малым и измеряться в пФ. В такой маленькой микросхеме попросту не может быть больших ёмкостей.

Мы допускаем также, что резистор, подключённый параллельно микросхеме (см. пунктир на схеме выше) и усаженный на землю, будет образовывать более точный делитель. В этом случае стабильность возрастёт.

Тогда номиналы нужно брать более весомые, но не забывать, что это значительно ограничит ток, идущий через светодиоды. Фактически нужно продумать этот вопрос согласно имеющейся ситуации.

Принцип действия светодиода

 Офисные Светильники

Прежде, чем подключить светодиод, необходимо знать минимум теории. В районе p-n перехода за счёт существования дырочной и электронной проводимости образуется зона с нестандартными для толщи основного кристалла энергетическими уровнями.

При рекомбинации носителей заряда освобождается энергия, и если величина её равна кванту света, то спай двух материалов начинает лучиться. Оттенок зависит от некоторых величин, а соотношение выглядит следующим образом:

E = h c / λ, где h = 6,6 х 10-34 – постоянная Планка, с = 3 х 108 – скорость света, а греческой буквой лямбда обозначается длина волны (м)

Из этого утверждения следует, что может быть создан диод, где разница энергетических уровней составляет Е.

Это и будет искомое. Именно так изготавливаются светодиоды. А в зависимости от разницы уровней, цвет может быть синим, красным, зелёным и пр.

Причём не все светодиоды обладают одинаковым КПД. Самыми слабыми являются синие, которые и исторически появились одними из последних.

КПД светодиодов сравнительно мал (для полупроводниковой техники) и редко дотягивает даже до 45%.

Но при всем этом удельное превращение электрической энергии в полезную световую просто потрясающее.

Каждый Вт энергии может давать фотонов в 6-7 раз больше, нежели спираль накала в тех же условиях потребления. Это объясняет, почему светодиоды сегодня занимают прочную позицию в осветительной технике.

Именно по этой же причине и создание мигалки на основе этих полупроводниковых элементов несравненно проще. Достаточно сравнительно малых напряжений, чтобы схема начала работать.

Все остальное сводится к тому, чтобы правильным образом подобрать ключевые и пассивные элементы для создания пилообразного или импульсного напряжения нужной формы:

Амплитуда.
Скважность.
Частота следования.

Как это сделать? Очевидно, что подключение светодиода к сети 220В будет не лучшей идеей.

Имеются подобные схемы, но заставить их мигать достаточно сложно, потому что элементная база для этого ещё не создана.

Обычно светодиоды работают от гораздо более низких питающих напряжений. Из них самыми доступными являются:

Напряжение +5 В присутствует в устройствах заряда телефонных аккумуляторов, а также iPad и других гаджетов.

Правда, выходной ток в этом случае невелик, но в большинстве случаев это и не нужно. Кроме того, +5 В можно найти на одной из шин блока питания персонального компьютера.

В этом случае с ограничением по току никаких проблем не будет. Провод в этом случае красного цвета, а землю ищите на чёрном.

Напряжение от +7 до +9 В часто встречается на зарядных устройствах ручных радиостанций, в обиходе называемых рациями.

Великое множество фирм, и у каждой свои стандарты

На наш взгляд схема подключения светодиода будет лучше всего работать от +12 В.

Это стандартное напряжение в микроэлектроники, его можно встретить во многих местах. Также компьютерный блок содержит вольтаж -12 В. Изоляция жилы синяя, а сам провод оставлен для совместимости со старыми приводами.

В нашем случае он может понадобиться в том случае, если не окажется под рукой элементной базы для питания +12 В. Тогда будет достаточно найти комплементарные транзисторы и включить их вместо исходных. Номиналы пассивных элементов остаются теми же. Сам светодиод также включается обратной стороной.

Номинал -3,3 В на первый взгляд кажется невостребованным.

Но если посчастливится достать на aliexpress RGB светодиоды SMD0603 по 4 рубля за штуку, то можно будет не воротить горы.

Однако! Падение напряжения в прямом направлении не должно превышать 3 В (обратное включение не понадобится, но в случае неправильной полярности максимальный вольтаж составляет 5).

Теперь, когда устройство светодиода нам вполне понятно, а условия горения известны, приступим к реализации нашей задумки. А именно – заставим элемент мигать.

Обычные светодиоды и семы мигалок на их основе

Начинающий радиолюбитель может собрать мигалку и на простом одноцветном светоизлучающем диоде, имея минимальный набор радиоэлементов. Для этого рассмотрим несколько практических схем, отличающихся минимальным набором используемых радиодеталей, простотой, долговечностью и надежностью.

Первая схема состоит из маломощного транзистора Q1 (КТ315, КТ3102 или аналогичный импортный аналог), полярного конденсатора C1 на 16В с емкостью 470 мкФ, резистора R1 на 820-1000 Ом и светодиода L1 наподобие АЛ307. Питается вся схема от источника напряжения 12В.

Приведенная схема работает по принципу лавинного пробоя, поэтому база транзистора остаётся «висеть в воздухе», а на эмиттер подаётся положительный потенциал. При включении происходит заряд конденсатора, примерно до 10В, после чего транзистор на мгновение открывается с отдачей накопленной энергии в нагрузку, что проявляется в виде мигания светодиода. Недостаток схемы заключается в необходимости наличия источника напряжения 12В.

Вторая схема собрана по принципу транзисторного мультивибратора и считается более надёжной. Для её реализации потребуется:

  • два транзистора КТ3102 (или их аналога);
  • два полярных конденсатора на 16В емкостью 10 мкФ;
  • два резистора (R1 и R4) по 300 Ом для ограничения тока нагрузки;
  • два резистора (R2 и R3) по 27 кОм для задания тока базы транзистора;
  • два светодиода любого цвета.

В данном случае на элементы подаётся постоянное напряжение 5В. Схема работает по принципу поочередного заряда-разряда конденсаторов С1 и С2, что приводит к открыванию соответствующего транзистора. Пока VT1 сбрасывает накопленную энергию С1 через открытый переход коллектор-эмиттер, светится первый светодиод. В это время происходит плавный заряд С2, что способствует уменьшению тока базы VT1. В определённый момент VT1 закрывается, а VT2 открывается и светится второй светодиод.

Вторая схема имеет сразу несколько преимуществ:

  1. Она может работать в широком диапазоне напряжений начиная от 3В. Подавая на вход более 5В, придётся пересчитать номиналы резисторов, чтобы не пробить светодиод и не превысить максимальный ток базы транзистора.
  2. В нагрузку можно включать 2–3 светодиода параллельно или последовательно, пересчитав номиналы резисторов.
  3. Равное увеличение ёмкости конденсаторов ведёт к увеличению длительности свечения.
  4. Изменив ёмкость одного конденсатора, получим несимметричный мультивибратор, в котором время свечения будет различным.

Иногда вместо мигающих светодиодов радиолюбитель наблюдает обычное свечение, то есть оба транзистора частично приоткрыты. В таком случае нужно либо заменить транзисторы, либо запаять резисторы R2 и R3 с меньшим номиналом, увеличив, тем самым, ток базы.

Кроме рассмотренных принципиальных схем, существует великое множество других несложных решений, которые вызывают мигание светодиода

Начинающим радиолюбителям стоит обратить внимание на недорогую и широко распространенную микросхему NE555, на которой также можно реализовать данный эффект. Её многофункциональность поможет собирать и другие интересные схемы

Принцип действия светодиода

Подключая светодиод, вызнайте минимум теории — портал ВашТехник готов помочь. Район p-n перехода за счет существования дырочной и электронной проводимости образует зону несвойственных толще основного кристалла энергетических уровней. Рекомбинируя, носители заряда высвобождают энергию, если величина равна кванту света, спай двух материалов начинает лучиться. Оттенок определен некоторыми величинами, соотношение выглядит следующим образом:

E = h c / λ; h = 6,6 х 10-34 – постоянная Планка, с = 3 х 108 – скорость света, греческой буквой лямбда обозначается длина волны (м).

Из утверждения следует: может быть создан диод, где разница энергетических уровней составляет. Так изготавливаются светодиоды. В зависимости от разницы уровней, цвет синий, красный, зелёный. Редкие светодиоды обладают одинаковым КПД. Слабыми считают синие, которые исторически появились последними. КПД светодиодов сравнительно мал (для полупроводниковой техники), редко достигает 45%. Удельное превращение электрической энергии в полезную световую просто потрясающее. Каждый Вт энергии дает фотонов в 6-7 раз больше, нежели спираль накала в эквивалентных условиях потребления. Объясняет, почему светодиоды сегодня занимают прочную позицию в осветительной технике.

Создание мигалки на основе полупроводниковых элементов несравненно проще. Хватит сравнительно малых напряжений, схема начнет работать. Остальное сводится к правильному подбору ключевых и пассивных элементов для создания пилообразного или импульсного напряжения нужной конфигурации:

Амплитуда.
Скважность.
Частота следования.

Очевидно, подключение светодиода к сети 230 вольт будет негодной идеей. Имеются подобные схемы, но заставить мигать сложно, элементная база отсутствует. Светодиоды работают от гораздо более низких питающих напряжений. Самыми доступными являются:

  • Напряжение +5 В присутствует в устройствах заряда телефонных аккумуляторов, iPad и других гаджетов. Правда, выходной ток невелик, и не нужно. Кроме того, +5 В можно найти на шине блока питания персонального компьютера. С ограничением тока проблемы устраним. Провод красного цвета, землю ищите на черном.
  • Напряжение +7…+9 Встречается на зарядных устройствах ручных радиостанций, в обиходе называемых рациями. Великое множество фирм, у каждой стандарты. Здесь бессильные дать конкретные рекомендации. Рации чаще выходят из строя в силу особенностей использования, лишние зарядные устройства обычно можно достать сравнительно дешево.
  • Схема подключения светодиода будет лучше работать от +12 вольт. Стандартное напряжение микроэлектроники, встретим во многих местах. Компьютерный блок содержит вольтаж -12 вольт. Изоляция жилы синяя, сам провод оставлен для совместимости со старыми приводами. В нашем случае может понадобиться, не окажись под рукой элементной базы питания +12 вольт. Комплементарные транзисторы найти, включить вместо исходных сложно. Номиналы пассивных элементов остаются. Светодиод включается обратной стороной.
  • Номинал -3,3 вольт на первый взгляд кажется невостребованным. Посчастливится достать на aliexpress RGB светодиоды SMD0603 4 рубля штука, можно будет не воротить горы. Однако! Падение напряжения в прямом направлении не превышает 3 вольта (обратное включение не понадобится, но в случае неправильной полярности максимальный вольтаж составляет 5).

Устройство светодиода понятно, условия горения известны, приступим к реализации задумки. Заставим элемент мигать.

Как сделать, чтобы обычный светодиод мигал

Схема, которую мы изобразили на рисунке, использует для своей работы лавинный пробой транзистора.

Если брать именно КТ315Б, который мы используем в качестве ключа, то для него максимально обратное напряжения между коллектором и базой составляет 20 В.

Поэтому ничего опасного в таком включении не имеется. А вот у модификации КТ315Ж этот параметр составляет всего лишь 15 В.

Это гораздо ближе к выбранному нами напряжению питания +12 В. Поэтому, такой транзистор в данной схеме использовать не стоит.

Строго говоря, лавинный пробой не является штатным режимом p-n перехода. В данном случае за счёт слишком большого обратного напряжения между коллектором и базой происходит ионизация атомов от ударов разогнавшимися носителями зарядов.

В результате образуется масса свободных заряженных частиц, которые увлекаются полем и образуют ток. Очевидцы утверждают, что для пробоя транзистора КТ315 требуется обратное напряжение, приложенное между коллектором и эмиттером, амплитудой 8-9 В.

А теперь пара слов о том, как работает схема. В первоначальный момент времени начинает заряжаться конденсатор.

Он подключен на +12 В, а остальная часть схемы оборвана за счёт того, что закрыт транзисторный ключ.

Мигающий светодиод — это достаточно распространенное явление в электронике. Множество устройств дополняются светодиодами, обеспечивая подачу необходимых сигналов или простую подсветку.

  • Особенности светодиодов

Плюсы и минусы имитатора сигнализации на даче и для прочих целей

  • Финансовая доступность. Приобретение такого оборудования потребует не более 5–10 долларов.
  • Гарантированный результат. Если рассмотреть риски вторжения при отсутствии любых признаков сигнализации, то они гораздо выше, чем возможность покушения на жилище при подключённых, пусть даже фальшивых, камерах.
  • Может послужить хорошим дополнением к действительной охранной системе, расположенной внутри дома, например системой оповещения при помощи сотового телефона или включение «ревуна».
  • Простота монтажа. Смонтировать и укрепить камеру на доме самостоятельно по силам любому взрослому мужчине.

Конечно, главный минус тоже понятен. Заключается он в том, что серьёзного сопротивления краже данная конструкция оказать не сможет. Если проникнуть внутрь дома соберётся действительно матёрый преступник, он рано или поздно это сделает.

Немного о самих мигающих светодиодах

Основой мигания светодиода служит небольших размеров чип, который состоит из высокочастотного задающего генератора. Последний работает совместно с делителем на логических элементах, давая возможность получать вместо высоких значений частоты требуемые 1-3 Гц.

Чтобы реализовать низкочастотный генератор, необходимо использовать конденсатор с большой ёмкостью. Решив собрать схему своими руками, весьма проблематично было бы использовать полупроводник с большой площадью. Почему – да он просто не уместится в корпусе светодиода.

На полупроводниковой подножке размещены не только генератор и делитель, но также электронный ключ и диод-протектор. Мигающие светодиоды с напряжением питания 3-12В оборудуются также ограничительным резистором, а низковольтным он не требуется.

Основное назначение диода-протектора заключается в предотвращении поломки микросхемы в случае переплюсовки её питания.

При подаче напряжения автомобильной сети номинал токоограничивающего резистора должен выбираться из диапазона 3-5кОм. Подключив светодиод своими руками можно отметить, что он потребляет ток не только при мерцании, но и в пазах.

Область применения

Мигающие светодиоды со встроенным генератором нашли применение в построении новогодних гирлянд. Собирая их в последовательную цепь и устанавливая резисторы с небольшим отличием по номиналу, добиваются сдвига в мигании каждого отдельного элемента цепи. В итоге получается прекрасный световой эффект, не требующий сложного блока управления. Достаточно только подключить гирлянду через диодный мост.

Мигающие светоизлучающие диоды, управляемые током, применяются в качестве индикаторов в электронной технике, когда каждому цвету соответствует определённое состояние (вкл./выкл. уровень заряда и пр.). Также из них собирают электронные табло, рекламные вывески, детские игрушки и прочие товары, в которых разноцветное мигание вызывает интерес у людей.

Умение собирать простые мигалки станет стимулом к построению схем на более мощных транзисторах. Если приложить немного усилий, то с помощью мигающих светодиодов можно создать множество интересных эффектов, например – бегущую волну.

Читайте так же

Представляю 3 схемы мигалок и 2 схемы цветомузыки. Первая — на 2 светодиода, остальные для одного.

Транзисторы КТ209М pnp типа. Можно использовать и npn с изменением полярности питания, светодиодов и конденсаторов.

В интернете есть подобные схемы симметричного мультивибратора, где транзисторы соединены эмиттерами, а коллекторы вверху, например, как в этой схеме звукового генератора: Схема собрана на пластиковой карточке.

Вторая схема
состоит из двух транзисторов pnp и npn, одного резистора, конденсатора и светодиода. Питается от двух аккумуляторов AA, как и все схемы этого обзора. Транзисторы: КТ3107И и КТ3102Б (а может быть Л(И) — цвет не однозначный), также тёмно-зелёная точка почему-то на округлой стороне транзистора, а не на плоской, как указано во всех справочниках.

Для просмотра в большем размере нужно нажать на ссылку с названием видео, или на кнопку YouTube во время проигрывания!

В третьей схеме
добавлен второй резистор. Параметры мигания во всех схемах можно настраивать изменением ёмкость конденсаторов и сопротивления резисторов.

Для просмотра в большем размере нужно нажать на ссылку с названием видео, или на кнопку YouTube во время проигрывания!

Светодиод мигает под музыку из компьютера или любого другого музыкального устройства. Подключается к одному из двух звуковых каналов. В схеме используется NPN транзистор С9014, резистор 10 кОм, мощный светодиод 3 Вт. Питается от литиевого аккумулятора напряжением 3,7 В.

Вместо аккумулятора можно использовать 5 Вольт из блока питания системника. Яркость изменяется подбором сопротивления резистора, напряжения питания и громкости на компьютере.

Для просмотра в большем размере нужно нажать на ссылку с названием видео, или на кнопку YouTube во время проигрывания!

На видео используется мощный светодиод с допустимым максимальным током 700 мА при падении напряжения 4 В

Поэтому, если взять обычный светодиод с током 20 мА, то важно не допустить сильного превышения этого значения тока.. Вторая схема цветомузыки, на мой взгляд менее удачная, но, может быть кому-то пригодится

Публикую фото, с подписанными значениями деталей.
Сопротивление резистора и ёмкость конденсатора можно менять.

Вторая схема цветомузыки, на мой взгляд менее удачная, но, может быть кому-то пригодится. Публикую фото, с подписанными значениями деталей.
Сопротивление резистора и ёмкость конденсатора можно менять.

Новые статьи добавлены на второй сайт, на который можно перейти через кнопку «Спектроскопия» в меню сайта!

Мигающий светодиод может быть реализован и использован несколькими способами, от чего зависит и его дальнейшая область применения. Схемы могут состоять из нескольких диодов, транзисторов, подключаться к различным источникам питания, даже к батарейкам, по-разному моргать. Собрать большинство из них можно своими руками, но иногда нужно подогнать теоретическую базу.

Один из самых простых способов реализации моргающих светодиодных индикаторов может успешно имитировать сигнализацию для автомобиля. Для авто премиум-класса это не очень актуально, а для менее элитной техники, общая стоимость которой не окупает установку дорогостоящей системы оповещения, такая схема будет в самый раз. Мигалка на светодиодах в таком случае будет оптимальным вариантом.

Конструкция и детали

На диапозитивной пленке для принтера можно напечатать, например, ВКЛЮЧЕНО и наклеить надпись на прямоугольный корпус (22×10 мм) этой сборки.

Резисторы можно взять любые соответствующей мощности -МЛТ, С2-23, С1-4. Оксидные конденсаторы — импортные аналоги К50-35; СЗ, С6, С7, С8 — К10-7, К10-17, КМ-5; С9 — К73-16, К73-17 на напряжение не ниже 400 В. Стабилитрон VD1 подойдет любой маломощный на 9…10 В — Д814Б1, Д814В1, КС191Ж, КС210Б.

Диоды VD3, VD4 — любые из серий КД103, КД521, 1N4148; VD2, VD5 можно заменить на Д243 (Г-Е), КД209 (А—Г), КД105 (Б-Г), 1N4003-1N4007. Светодиод HL1 — любой мигающий без встроенного токоограничительного резистора, например, L56BYD, L795BGD, L36BSRD.

Светодиод HL2 заменим любым из серий АЛ307, КИПД35, КИПД40, L1503. Вместо транзистора VT1 можно установить любой биполярный структуры р-п-р из серии КТ361, SS9015, SS9012, ВС308, 2SA1175. ѴТЗ — КТ3102, КТ342, SS9014, SS9016 с любым буквенным индексом.

Высоковольтный транзистор ѴТ2 можно заменить на КТ969А, КТ6135А, MPSA42, 2SC2330, 2N6517. Полевой транзистор ѴТ4 нужно выбрать с напряжением отсечки не более 2 В, наиболее подходящие по этому параметру транзисторы серии КП103, 2П103 с индексами А, АР, Б, Е, Ж.

Пьезокерамический излучатель звука со встроенным генератором BF1 можно заменить любым аналогичным серии НРА с индексом X в конце обозначения. При невозможности приобрести такую «пищалку» можно построить соответствующий узел на микросхеме, например, К564ЛА7, КР1561ЛА7.

Реле К1 типа РП21-УХЛ4 с сопротивлением обмотки б кОм можно заменить на РПУ-0-УХЛ4 с сопротивлением обмотки 5 кОм. Все свободные группы контактов соединяются параллельно. Вместо микросхемы К561ИЕ16 (CD4020) или в дополнение к ней для расширения диапазона выдержек можно применить и другие двоичные счетчики серий К561,564, КР1561 в соответствующем включении.

Кнопка SB1 — ПКН-150-1, TD-06XEX, TD-06XBX, Переключатель SB2 любой малогабаритный галетный или барабанный на 11 положений. Вместо указанной на рис. 1.16 светодиодной сборки можно использовать аналогичные по конструкции сборки в крупном круглом корпусе с хорошим дизайном — DLA/6GD, DLA/6ID, DLA/6YD соответственно зеленого, красного и желтого цвета, содержащие по 6 светодиодов.

Правильно собранное по приведенным на рисунках схемах устройство начинает работать сразу и не требует налаживания.

Оно может найти применение для управления лампами накаливания, электронагревательными приборами, погружными насосами, вентиляционными установками, озонаторами, бытовой радиоэлектронной аппаратурой и для многих других целей.

Литература: А. П. Кашкаров, А. Л. Бутов — Радиолюбителям схемы, 2008.

Add a Comment

Ваш e-mail не будет опубликован.

Яндекс.Метрика