Устройство светодиода принцип работы и конструкция

Лист цветной бумаги складываем пополам цветной стороной наружу. От линии сгиба делаем параллельные надрезы на равном расстоянии друг от друга (надрезы должны заканчиваться, не доходя до краев листа 2 сантиметра). Разворачиваем лист бумаги и сворачиваем его в трубочку, концы листа склеиваем. Теперь одновременно снизу и сверху немного сдавливаем эту трубочку — получился фонарик. Но это еще не все. Для фонарика можно сделать сердцевинку. Для этого из более плотной бумаги склеиваем трубочку, но меньшего диаметра. Соединяем две детали вместе (сердцевинку помещаем внутрь фонарика) при помощи клея или степлера. Фонарик готов.

Органические светодиоды OLED

Основная статья: OLED

Многослойные тонкоплёночные структуры, изготовленные из органических соединений, которые эффективно излучают свет при пропускании через них электрического тока. Основное применение OLED находит при создании устройств отображения информации (дисплеев). Предполагается, что производство таких дисплеев будет гораздо дешевле, чем жидкокристаллических.

Главная проблема для OLED — время непрерывной работы, которое должно быть не меньше 15 тыс. часов. Одна из проблем, которая в настоящее время препятствует широкому распространению этой технологии, состоит в том, что «красный» OLED и «зелёный» OLED могут непрерывно работать на десятки тысяч часов дольше, чем «синий» OLED. Это визуально искажает изображение, причём время качественного показа неприемлемо для коммерчески жизнеспособного устройства. Хотя сегодня «синий» OLED все-таки добрался до отметки в 17,5 тыс. часов (2 года) непрерывной работы.

Дисплеи из органических светодиодов применяются в последних моделях сотовых телефонов, GPS-навигаторах, OLED-телевизорах, для создания приборов ночного видения.

Вариант 4.

вам потребуются

Цветная бумага и картон

— шило

— ножницы

— двусторонний скотч или клей

— пластиковая крышка

План работы:

A. Нарежьте цветную бумагу полосками одинаковой длины и ширины (например, 1,5 см — ширина, 30 см — длина). Для изготовления одного фонарика вам потребуется 4 полоски бумаги.

B. Проделайте шилом небольшое отверстие в центре каждой полоски.

D. Проденьте через него нитку, конец нитки завяжите узелком. Сделайте второй узелок на расстоянии примерно 4 см от птички.

E. Теперь вам нужно нанизать бумажные полоски на нитку. Продвиньте полоски вдоль нитки до верхнего узелка.

F. Сверху бумажных полосок завяжите еще один узелок, на который для красоты можно надеть бусинку.

H,i,j. Раздвиньте полоски и симметрично прикрепите их концы к крышке.

Разрезные фонарики

Для самого доступного способа
изготовления бумажных фонариков, с которым прекрасно справятся дети младших классов, понадобятся:

  • бумага различных цветов;
  • линейка и карандаш;
  • прямые или фигурные ножницы;
  • клей либо степлер для закрепления деталей;
  • бусины или пайетки для украшения.

Для начала цветной лист формата А4 складываем пополам вдоль и проводим линию, отступив сантиметр от края. Со стороны сгиба делаем надрезы до очерченной линии. Развернув бумагу, получаем внешнюю часть фонарика.

Для внутренней части лучше использовать бумагу другого цвета. От края отступаем два сантиметра и проводим линию. Эту полоску отрезаем, чтобы потом использовать как ручку, а оставшуюся часть скручиваем в цилиндр, закрепив края клеем или степлером.

Чтобы соединить внешнюю часть и внутреннюю, сверху и снизу цилиндра наносим полосу клея, а затем прижимаем внешнюю часть с двух сторон.

Остаётся закрепить ручку с помощью клея — и украшение готово.

Можно поэкспериментировать с размерами и различными цветовыми сочетаниями. А украшенный бусинами или пайетками, этот элемент декора примет ещё более праздничный вид.

Если закрепить небольшие бумажные фонарики на ёлочной гирлянде, получится красивое новогоднее украшение. Однако для этой цели можно использовать только те гирлянды, лампочки которых не нагреваются при работе.

Последовательность сборки мигалки

Мигающие светодиоды часто применяют в различных сигнальных цепях. В продаже довольно давно появились светодиоды (LED) различных цветов, которые при подключении к источнику питания периодически мигают. Для их мигания не нужны никакие дополнительные детали. Внутри такого светодиода смонтирована миниатюрная интегральная микросхема, управляющая его работой. Однако для начинающего радиолюбителя намного интереснее сделать мигающий светодиод своими руками, а заодно изучить принцип работы электронной схемы, в частности мигалок, освоить навыки работы с паяльником.

Это не всегда так просто, но это можно сделать. В то время как у каждого из них есть свое место, иногда приятно иметь более дешевую и недорогую альтернативу. Наш добрый старый друг мигает лампочкой накаливания. Мигающая лампочка имеет биметаллическую полоску внутри, когда она становится достаточно горячей, отключает контур, пока он не остынет.

Наша мигающая лампочка является запасной частью множества рождественских огней. Это дает выходной ток в диапазоне от 150 до 250 мА, в зависимости от свежести батареи и сопротивления лампы. Чтобы попробовать, мы создали схему на куске перфорированной. Лампочка не очень интересовалась пайкой, но в конечном итоге была выполнена. После пайки всех двух компонентов он готов попробовать.

НОВИНКА!!!
СВЕТОДИОДНЫЕ 3D СВЕТИЛЬНИКИ — В жизни всегда найдется место волшебству…

Параллельное и последовательное включение светодиодов

Параллельное включение светодиодов с общим резистором — плохое решение.
Светодиоды имеют разброс характеристик, в результате чего по ним потекут разные токи, и светиться они будут с разной яркостью. Более того,
при выходе из строя одного из светодиодов по другим потечет больший ток. Всё это нехорошо.

При последовательном подключении светодиодов сопротивление ограничивающего
резистора рассчитывается также, как и с одним светодиодом, просто падения напряжений всех светодиодов
складываются между собой. Так, к автомобильному аккумулятору 12 вольт можно подключить 12 / 2 = 6
светодиодов с падением напряжения 2 вольта. В этом случае теоретически можно обойтись вообще
без резистора, однако из-за расброса характеристик светодиодов проверить ток в цепи будет не
лишним. Он не должен превышать номинального тока светодиода. Если ток выше, следует включить
в цепь резистор сопротивлением несколько ом.

Математическая модель диода. Обозначение.

Полупроводниковый диод имеет два вывода. Выводы называются: Анод и Катод. Полупроводниковый диод обладает свойством односторонней проводимости. Диод проводит ток, если к аноду приложить положительное напряжение, а к катоду — отрицательное. Если наоборот, то проводимость отсутствует.

Полупроводниковый диод позволяет создавать асимметричные с точки зрения полярности сигнала схемы. Например, выпрямители, преобразующие переменный ток в пульсирующий однополярный, или детекторы, выделяющие низкочастотную огибающую из высокочастотного сигнала.

На схемах полупроводниковый диод обозначается, как показано на рисунке.

Полупроводниковый диод на основе искусственного p-n перехода обладает проводимостью, описываемой следующей формулой:

[Ток через диод] = [Обратный ток диода] * (exp([Напряжение на диоде] * [K]) — 1).

Где [K] = ln([Ток измерения напряжения насыщения] / [Обратный ток диода] + 1) / [Напряжение насыщения при токе измерения].

[Обратный ток диода], [Напряжение насыщения при токе измерения] и [Ток измерения напряжения насыщения] — данные из справочника. В справочнике обычно пишут: ‘Напряжение насыщения 0.8 В при токе 1 А’ или ‘Максимальное прямое напряжение 0.8 В при токе 7 А’. Это как раз и есть нужные параметры. Еще ток измерения иногда приводят в сноске.

На рисунке приведена Вольтамперная характеристика полупроводникового диода, зависимость тока и напряжения. Как мы видим, рост напряжения на диоде приводит к очень быстрому, экспоненциальному росту тока.

Обычные светодиоды и семы мигалок на их основе

Начинающий радиолюбитель может собрать мигалку и на простом одноцветном светоизлучающем диоде, имея минимальный набор радиоэлементов. Для этого рассмотрим несколько практических схем, отличающихся минимальным набором используемых радиодеталей, простотой, долговечностью и надежностью.

Первая схема состоит из маломощного транзистора Q1 (КТ315, КТ3102 или аналогичный импортный аналог), полярного конденсатора C1 на 16В с емкостью 470 мкФ, резистора R1 на 820-1000 Ом и светодиода L1 наподобие АЛ307. Питается вся схема от источника напряжения 12В.

Приведенная схема работает по принципу лавинного пробоя, поэтому база транзистора остаётся «висеть в воздухе», а на эмиттер подаётся положительный потенциал. При включении происходит заряд конденсатора, примерно до 10В, после чего транзистор на мгновение открывается с отдачей накопленной энергии в нагрузку, что проявляется в виде мигания светодиода. Недостаток схемы заключается в необходимости наличия источника напряжения 12В.

Вторая схема собрана по принципу транзисторного мультивибратора и считается более надёжной. Для её реализации потребуется:

  • два транзистора КТ3102 (или их аналога);
  • два полярных конденсатора на 16В емкостью 10 мкФ;
  • два резистора (R1 и R4) по 300 Ом для ограничения тока нагрузки;
  • два резистора (R2 и R3) по 27 кОм для задания тока базы транзистора;
  • два светодиода любого цвета.

В данном случае на элементы подаётся постоянное напряжение 5В. Схема работает по принципу поочередного заряда-разряда конденсаторов С1 и С2, что приводит к открыванию соответствующего транзистора. Пока VT1 сбрасывает накопленную энергию С1 через открытый переход коллектор-эмиттер, светится первый светодиод. В это время происходит плавный заряд С2, что способствует уменьшению тока базы VT1. В определённый момент VT1 закрывается, а VT2 открывается и светится второй светодиод.

Вторая схема имеет сразу несколько преимуществ:

  1. Она может работать в широком диапазоне напряжений начиная от 3В. Подавая на вход более 5В, придётся пересчитать номиналы резисторов, чтобы не пробить светодиод и не превысить максимальный ток базы транзистора.
  2. В нагрузку можно включать 2–3 светодиода параллельно или последовательно, пересчитав номиналы резисторов.
  3. Равное увеличение ёмкости конденсаторов ведёт к увеличению длительности свечения.
  4. Изменив ёмкость одного конденсатора, получим несимметричный мультивибратор, в котором время свечения будет различным.

Иногда вместо мигающих светодиодов радиолюбитель наблюдает обычное свечение, то есть оба транзистора частично приоткрыты. В таком случае нужно либо заменить транзисторы, либо запаять резисторы R2 и R3 с меньшим номиналом, увеличив, тем самым, ток базы.

Кроме рассмотренных принципиальных схем, существует великое множество других несложных решений, которые вызывают мигание светодиода

Начинающим радиолюбителям стоит обратить внимание на недорогую и широко распространенную микросхему NE555, на которой также можно реализовать данный эффект. Её многофункциональность поможет собирать и другие интересные схемы

Тестирование мигающих RGB светодиодов

Компьютерный блок питания выступает идеальным вариантом тестирования светодиодов SMD0603. Нужно просто поставить резистивный делитель. Согласно схеме технической документации оценивают сопротивления p-n переходов в прямом направлении, заручившись помощью тестера. Прямое измерение здесь невозможно. Соберем схему, показанную ниже:

Провод +3,3 В блока питания компьютера оранжевой изоляции, схемную землю берем с черного

Обратите внимание: опасно включать модуль без нагрузки. Идеально подключить DVD-привод или другое устройство

Допускается при наличии умения обращения с приборами под током снять боковую крышку, извлечь оттуда нужные контакты, не снимать блок питания. Подключение светодиодов иллюстрирует схема. Измерили сопротивление на параллельном подключении светодиодов и остановились?

Номиналы нужно брать весомые, не забывать: значительно ограничим ток, идущий через светодиоды. Фактически нужно продумать вопрос согласно ситуации.

Цвета и материалы

См. также: Синий светодиод и Белый светодиод

Розовый светодиод диаметром 5 мм

Обычные светодиоды изготавливаются из различных неорганических полупроводниковых материалов, в следующей таблице приведены доступные цвета с диапазоном длин волн, падение напряжения на диоде и материал:

Цвет длина волны (нм) Напряжение (В) Материал полупроводника
Инфракрасный λ > 760 ΔU Арсенид галлия (GaAs)Алюминия галлия арсенид (AlGaAs)
Красный 610 λ 1,63 U Алюминия-галлия арсенид (AlGaAs)Галлия арсенид-фосфид (GaAsP)Алюминия-галлия-индия фосфид (AlGaInP)Галлия(III) фосфид (GaP)
Оранжевый 590 λ 2,03 U Галлия фосфид-арсенид (GaAsP)Алюминия-галлия-индия фосфид (AlGaInP)Галлия(III) фосфид (GaP)
Жёлтый 570 λ 2,10 U Галлия арсенид-фосфид (GaAsP)Алюминия-галлия-индия фосфид (AlGaInP)Галлия(III) фосфид (GaP)
Зелёный 500 λ 1,9U Индия-галлия нитрид (InGaN) / Галлия(III) нитрид (GaN)Галлия(III) фосфид (GaP)Алюминия-галлия-индия фосфид (AlGaInP)Алюминия-галлия фосфид (AlGaP)
Синий 450 λ 2,48 U Селенид цинка (ZnSe)Индия-галлия нитрид (InGaN)Карбид кремния (SiC) в качестве субстратаКремний (Si) в качестве субстрата — (в разработке)
Фиолетовый 400 λ 2,76 U Индия-галлия нитрид (InGaN)
Пурпурный Смесь нескольких спектров 2,48 U Двойной: синий/красный диод,синий с красным люминофором,или белый с пурпурным пластиком
Ультрафиолетовый λ 3,1 U Алмаз (235 нм)Нитрид бора (215 нм)Нитрид алюминия (AlN) (210 нм)Нитрид алюминия-галлия (AlGaN)Нитрид алюминия-галлия-индия (AlGaInN) — (менее 210 нм)
Белый Широкий спектр ΔU ≈ 3,5 Сочетание трех светодиодов основных цветов (красный, синий, зеленый), либо люминофор, излучающий белый цвет под воздействием светодиода со спектром от синего до ультрафиолетового;

Несмотря на то, что в мире широко выпускаются белые светодиоды в конструктиве синего/фиолетового свечения кристалла с нанесенным на него желтым или оранжевым люминофором, ничто не мешает нанести и люминофоры другого цвета свечения. В результате нанесения красного люминофора получают пурпурные или розовые светодиоды, гораздо реже выпускают светодиоды салатного цвета, где на синий кристалл наносится люминофор зеленого цвета свечения.

Светодиоды также могут иметь цветной корпус.

В 2001 году Citizen Electronics первой в мире произвела цветной SMD светодиод из цветной пастели под названием PASTELITE.

Область применения

Мигающие светодиоды со встроенным генератором нашли применение в построении новогодних гирлянд. Собирая их в последовательную цепь и устанавливая резисторы с небольшим отличием по номиналу, добиваются сдвига в мигании каждого отдельного элемента цепи. В итоге получается прекрасный световой эффект, не требующий сложного блока управления. Достаточно только подключить гирлянду через диодный мост.

Мигающие светоизлучающие диоды, управляемые током, применяются в качестве индикаторов в электронной технике, когда каждому цвету соответствует определённое состояние (вкл./выкл. уровень заряда и пр.). Также из них собирают электронные табло, рекламные вывески, детские игрушки и прочие товары, в которых разноцветное мигание вызывает интерес у людей.

Умение собирать простые мигалки станет стимулом к построению схем на более мощных транзисторах. Если приложить немного усилий, то с помощью мигающих светодиодов можно создать множество интересных эффектов, например – бегущую волну.

Читайте так же

Мигающий светодиод может быть реализован и использован несколькими способами, от чего зависит и его дальнейшая область применения. Схемы могут состоять из нескольких диодов, транзисторов, подключаться к различным источникам питания, даже к батарейкам, по-разному моргать. Собрать большинство из них можно своими руками, но иногда нужно подогнать теоретическую базу.

Один из самых простых способов реализации моргающих светодиодных индикаторов может успешно имитировать сигнализацию для автомобиля. Для авто премиум-класса это не очень актуально, а для менее элитной техники, общая стоимость которой не окупает установку дорогостоящей системы оповещения, такая схема будет в самый раз. Мигалка на светодиодах в таком случае будет оптимальным вариантом.

Принцип работы

При пропускании электрического тока через p-n-переход в прямом направлении носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Не все полупроводниковые материалы эффективно испускают свет при рекомбинации. Лучшие излучатели относятся к прямозонным полупроводникам (то есть к таким, в которых разрешены прямые оптические переходы зона-зона), типа AIIIBV (например, GaAs или InP) и AIIBVI (например, ZnSe или CdTe). Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS).

Диоды, сделанные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают. Впрочем, в связи с развитием кремниевой технологии, активно ведутся работы по созданию светодиодов на основе кремния. Советский жёлтый светодиод КЛ 101 на основе карбида кремния выпускался ещё в 70-х годах, однако имел очень низкую яркость. В последнее время большие надежды связываются с технологией квантовых точек и фотонных кристаллов.

Емкость перехода

Все полупроводниковые диоды обладают емкостью перехода. Обедненная зона представляет собой диэлектрический барьер между двумя пластинами, которые формируются на краю обедненного участка и области с основными носителями заряда. Фактическое значение емкости зависит от обратного напряжения, которое приводит к изменению переходной зоны. Его увеличение расширяет обедненную зону и, следовательно, уменьшает емкость. Этот факт используется в варакторах или варикапах, но для других применений, особенно радиочастотных, этот эффект необходимо свести к минимуму. Параметр обычно указывается в pF при заданном напряжении. Для многих радиочастотных применений доступны специальные низкоомные диоды.

Распространенные проблемы ДХО

Почему перегорают дневные ходовые огни:

  1. Из-за износа. Эта причина является одной из самых распространенных и вызывается она тем, что диоды со временем просто отрабатывают свой ресурс эксплуатации. Этого никак избежать не получится. Разве что можно ставить на автомобиль более качественные ДХО, срок службы которых выше, но износ устройств предотвратить не удастся.
  2. В результате воздействия влаги. Сгорать диоды могут из-за постоянной работы в условиях влаги. Обычно ДХО ставятся на бамперах, поэтому при эксплуатации авто во влажную погоду избежать попадания воды на лампочки не удастся.
  3. Необходимость провести ремонт ходовых огней может возникнуть из-за перегорания диодных элементов. Как правило, такая проблема обуславливается тем, что для нормальной работы ДХО требуется 12 вольт, в то время как генераторы на современных авто вырабатывают около 14-14.5 вольт. Разумеется, это — слишком высокое напряжение для дневных ходовых огней, так что выйти из строя по этой причине они могут довольно быстро (автор видео о самостоятельно ремонте дневных ходовых огней в домашних условиях — Артем Квантов).

Фонарик-дом

Если вы хотите попробовать сделать популярные сегодня ультрафиолетовые и светодиодные фонарики, то можно попробовать для них выбрать форму домика. Красивые фонари в виде домов или даже дворцов сделать достаточно просто. В интернете можно найти шаблон практически на любой вкус. Если вы хотите провести больше времени с ребёнком, то можно попробовать даже нарисовать шаблон для будущей поделки самостоятельно.

Кроме того, вещь станет по-настоящему уникальной и нигде больше такую никто не встретит. Сделать такой фонарик можно буквально за пару часов. Основное отличие при создании будет заключаться лишь в используемом материале. В остальном же они делаются также, как и фонари в виде домиков из картона.

При создании таких фонарей имейте в виду, что аксессуар ни за что не сможет стать полноценным источником освещения. При этом фонарь можно использовать в качестве ночника в детской комнате или дополнительного источника освещения, например, на кухне, при условии, что основное освещение будет достаточно ярким.

Вариант 1 последовательное включение светодиода и резистора.

Итак, первым вариантом все же будет схема, где последовательно к светодиоду подключается обычный резистор с нужным сопротивлением. Величину сопротивления можно вычислить по закону ома. Допустим у нас светодиод, рассчитанный на напряжение 3 вольта и потребляющий 9 миллиампер. Напряжение питания (220 В) разделится между резистором и светодиодом. Если на светодиоде осядет 3 вольта, то на резисторе осядет около 217 вольт. Ток в последовательных цепях во всех точках одинаковый (в нашем случае он будет равен 9 мА). И чтобы узнать сопротивление резистора мы 217 вольт делим на 9 миллиампер и получаем 24 килоома (24000 ом).

Теоретически эта схема подключения светодиода к сети 220 вольт рабочая, но практически она скорее всего сгорит сразу при включении. Почему это так. Дело в том, что большинство обычных светодиодов рассчитаны на напряжение питания (при прямом своем включении, то есть плюс светодиода к плюсу источника питания и минус светодиода к минусу источника питания), где-то в пределах от 2,5 до 4,5 вольта. При прямом включении на светодиоде будет его рабочее напряжение (пусть 3 вольта), а излишек (217 вольт) осядет на резисторе. Обратное напряжение у светодиодов не такое уж и высокое (где-то около 30 вольт). И когда обратная полуволна переменного напряжения подается на светодиод, то светодиод просто выйдет из строя из-за слишком большого обратного напряжения, поданного на него. Напомню, что полупроводники при обратном включении имеют очень большое внутреннее сопротивление (гораздо большее чем стоящий в цепи резистор). Следовательно все сетевое напряжение осядет именно на светодиоде.

Что такое светодиод

Светодиод (LED)- это промышленное изделие из полупроводникового материала, которое излучает свет при прохождении через него электрического тока. Если ответить на этот вопрос еще полнее, то ток обусловлен движением электронов, когда к полупроводнику приложено внешнее напряжение, и электроны объединятся с так называемыми «дырками» в материале. Не трудно догадаться, что ток не может быть чрезмерным, что он разрушит полупроводниковый слой или наоборот, ток будет столь малым, что свечение просто не наступит.

Кстати, освещение (свет) на органических светодиодах обозначается, как OLED (ну, вот и встретили знакомые экраны телевизоров выполненные по технологии OLED). Как известно, свет- это с точки зрения физики есть излучение фотонов. Фотоны бывают разные, как по энергии, так и по частоте. Отсюда мы выходим на понимание цвета светодиодов, с изменением частоты меняется и цвет свечения светодиодов, так например, получают красивый красный светодиод.

Светодиоды состоят из сложных полупроводниковых материалов, которые состоят из элементов группы III и группы V периодической таблицы (они известны как материалы III-V). Примерами материалов III-V, обычно используемых для изготовления светодиодов, являются арсенид галлия (GaAs) и фосфид галлия (GaP).

Особенности эквалайзеров

Синий эквалайзер на заднем стекле

Данное оборудование на стекле авто создает светящееся изображение эквалайзера, которое пульсирует в зависимости от частоты звучания музыки. По сути – этот тот же эквалайзер, который обычно имеет каждая автомагнитола на своем дисплее, но только значительно увеличен в размерах. Само по себе данное оборудование никакой положительной функции не несет, оно просто переводит в световую индикацию звук музыки, который . Поэтому не стоит путать данный вид оборудования с эквалайзером, которым производится тонкая настройка звучания музыки.

Форма изображения у такого эквалайзера может быть разной. Самыми распространенными являются столбцы, отвечающие за определенную частоту звука. Расцветка такого оборудования может быть однотипная – все они имеют один цвет, такие эквалайзеры при работе изображают лишь увеличивающиеся или уменьшающиеся по высоте одноцветные столбцы, поделенные на сегменты.

Встречаются и разноцветные эквалайзеры. У них каждый столбец имеет несколько типов окраски сегментов, каждый из окрасов отвечает за определенный диапазон частоты звука. Например, звук низкой частоты окрашивается красным, средней – зеленым, а высокой – синим.

Некоторые дорогостоящие модели эквалайзеров могут включать несколько типов световых изображений, к примеру, по бокам имеются круглые разноцветные световые индикаторы, а по центру – столбцы.

Размеры эквалайзера тоже могут быть разные. Одни имеют небольшие габариты и пригодны даже для использования на боковых стеклах, другие же достаточно габаритны и могут покрывать заднее стекло полностью.

Самым удобным местом установки такого оборудования является заднее стекло. Его габаритные размеры позволяют оборудовать авто крупноразмерным световым оборудованием. Некоторые также устанавливают эквалайзеры на боковые стекла задних дверей, но это не всегда оправдано.

Схема включения выпрямительного диода

Простейший выпрямитель работает по следующей схеме. На вход подается переменное напряжение сети с положительными и отрицательными полупериодами, окрашенными соответственно в красный и синий цвета. На выходе подключается обычная нагрузка RH, а выпрямляющим элементом будет диод VD.

Когда на анод поступают положительные полупериоды напряжения, происходит открытие диода. В этот период через диод и нагрузку, запитанную от выпрямителя, будет протекать прямой ток диода Iпр. На графике, расположенном справа, эта волна обозначена красным цветом.

При поступлении на анод отрицательных полупериодов напряжения, наступает закрытие диода, и во всей цепи начинается течение незначительного обратного тока. В данном случае отрицательная полуволна переменного тока отсекается диодом. Эту отсеченную полуволну обозначает синяя прерывистая линия. На схеме условное обозначение выпрямительного диода такое же, как обычно, только поверх значка проставляются символы VD.

В результате, через нагрузку, подключенную через диод к сети, будет протекать уже не переменный, а пульсирующий ток одного направления. Фактически, это и есть выпрямленный переменный ток. Однако такое напряжение подходит лишь для нагрузок малой мощности, запитанных от сети переменного тока. Это могут быть лампы накаливания, которым не требуются особые условия питания. В этом случае напряжение будет проходить через лампу лишь во время импульсов – положительных волн. Наблюдается слабое мерцание лампы с частотой 50 Гц.

При подключении питания с таким же напряжением к приемнику или усилителю мощности, в громкоговорителе или колонках, будет слышен гул с низкой тональностью, частотой 50 Гц, известный как фон переменного тока. В этих случаях аппаратура начинает «фонить». Причиной такого состояния считается пульсирующий ток, проходящий через нагрузку и создающий в ней пульсирующее напряжение. Именно оно и создает фон.

Данный недостаток частично устраняется путем параллельного подключения к нагрузке фильтрующего электролитического конденсатора Сф с большой емкостью. В течение положительных полупериодов он заряжается импульсными токами, а во время отрицательных – разряжается с помощью нагрузки RH. Большая емкость конденсатора позволяет поддерживать на нагрузке непрерывный ток в течение всех полупериодов – положительных и отрицательных. На графике такой ток представляет собой сплошную волнистую линию красного цвета.

Тем не менее, данный сглаженный ток все равно не обеспечивает нормальную работу, поскольку половина входного напряжения теряется при выпрямлении, когда задействуется только один полупериод. Этот недостаток компенсируют мощные выпрямительные диоды, собранные вместе в так называемый диодный мост. Данная схема состоит из четырех элементов, что позволяет пропускать ток в течение всех полупериодов. За счет этого преобразование переменного тока в постоянный происходит значительно эффективнее.

Обычный светодиод мигает

Схема мигающего светодиода

Схема, изображенная рисунком, использует для работы лавинный пробой транзистора. КТ315Б, используемый в качестве ключа, имеет максимальное обратное напряжения между коллектором и базой 20 вольт. Опасного в таком включении мало. У модификации КТ315Ж параметр составляет 15 вольт, гораздо ближе выбранному напряжению питания +12 вольт. Транзистор использовать не стоит.

Лавинный пробой нештатный режим p-n перехода. За счет превышения обратного напряжения между коллектором и базой происходит ионизация атомов ударами разогнавшихся носителей заряда. Образуется масса свободных заряженных частиц, увлекаемых полем. Очевидцы утверждают: для пробоя транзистора КТ315 требуется обратное напряжение, приложенное между коллектором и эмиттером, амплитудой 8-9 В.

Пара слов о работе схемы. В первоначальный момент времени начинает заряжаться конденсатор. Подключен на +12 вольт, остальная часть схемы оборвана — закрыт транзисторный ключ. Постепенно разница потенциалов повышается, достигает напряжения лавинного пробоя транзистора. Напряжение конденсатора резко падает, параллельно подключены два открытых p-n перехода:

  1. Транзисторный находится в режиме пробоя.
  2. Светодиод открыт за счет прямого включения.

В сумме напряжение составит порядка 1 вольта, конденсатор начинает разряжаться через открытые p-n переходы, только напряжение падает ниже 7-8 вольт, лафа кончается. Транзисторный ключ закрывается, процесс повторяется заново. Схеме присущ гистерезис. Транзистор открывается при более высоком напряжении, нежели закрывается. Обусловлено инерционностью процессов. Можно наблюдать, как работает светодиод.

Номиналы резистора, ёмкости определяют период колебаний. Конденсатор можно взять значительно меньше, включив меж коллектором транзистора и светодиодом небольшое сопротивление. Например, 50 Ом. Постоянная разряда резко увеличится, проверить светодиод визуально будет проще (возрастет время горения). Понятно, ток не должен быть слишком большим, максимальные значения берутся из справочников. Не рекомендуется вести подключение светодиодных светильников из-за низкой термостабильности системы и наличия нештатного режима транзистора. Хотим попрощаться с читателями портала ВашТехник, надеемся, обзор получился интересным, картинки доходчивыми, объяснения ясными, как день Божий.

Открывать полный загадок мир радиоэлектроники, не имея специализированного образования, рекомендуется начинать со сборки простых электронных схем. Уровень удовлетворения при этом будет выше, если положительный результат будет сопровождаться приятным визуальным эффектом. Идеальным вариантом являются схемы с одним или двумя мигающими светодиодами в нагрузке. Ниже приведена информация, которая поможет в реализации наиболее простых схем, сделанных своими руками.

1Принцип действияи виды реле

Реле — это электромеханическое устройство для замыкания и размыкания электрической цепи. В классическом варианте реле содержит электромагнит, который управляет размыканием или замыканием контактов. Если в нормальном положении контакты реле разомкнуты, а при подаче управляющего напряжения замыкаются, такое реле называется замыкающим. Если в нормальном состоянии контакты реле сомкнуты, а при подаче управляющего напряжения размыкаются, такой тип реле называется размыкающим.

Кроме того, существует множество других видов реле: переключающие, одноканальные, многоканальные, реле постоянного или переменного тока, и другие.

Украшения из бумажных полосок

Круглые фонарики, которые изготовлены из полосок бумаги, похожи на ёлочные шары. Их легко делать и невозможно разбить. Размеры могут быть совершенно различными — от крохотных шариков до огромных бумажных шаров.

Для изготовления нужны:

  • бумага с красивым узором или эффектной структурой;
  • линейка с карандашом;
  • степлер и дырокол.

Бумагу нарезают на полоски одинаковой ширины. Чем больший шарик хотите получить, тем большей длины и ширины должны быть полоски.

На концах полосок, отступив несколько миллиметров от края, необходимо проделать отверстия.

Полоски складывают стопкой, а в совпавшие отверстия вставляют заклёпки, внизу и вверху. Заклёпки закрепляют и начинают распределять по кругу полоски, выдвигая по очереди.

Весьма декоративно смотрится круглый новогодний фонарь из бумаги, сделанный своими руками, если к нижней части прикрепить кисточку из бисера или ниток, а сверху сделать декоративную петлю.

Основные параметры выпрямительных диодов

Определяя параметры выпрямительных элементов, следует учитывать следующие факторы:

  • Разница потенциалов, максимально допустимая при выпрямлении тока, когда устройство еще не может выйти из строя.
  • Максимальное значение среднего выпрямленного тока.
  • Максимальный показатель обратного напряжения.

Выпрямительные устройства выпускаются различной формы и могут монтироваться разными способами.

В соответствии с физическими характеристиками, они разделяются на следующие группы:

  • Выпрямительные диоды большой мощности, пропускная способность которых составляет до 400 А. Они относятся к категории высоковольтных и выпускаются в двух видах корпусов. Штыревой корпус изготавливается из стекла, а таблеточный – из керамики.
  • Выпрямительные диоды средней мощности с пропускной способностью от 300 мА до 10 А.
  • Маломощные выпрямительные диоды с максимально допустимым значением тока до 300 мА.

Выбирая то или иное устройство, необходимо учитывать вольтамперные характеристики обратного и пикового максимальных токов, максимально допустимое прямое и обратное напряжение, среднюю силу выпрямленного тока, а также материал изделия и тип его монтажа. Все основные свойства выпрямительного диода и его параметры наносятся на корпус в виде условных обозначений. Маркировка элементов указывается в специальных справочниках и каталогах, ускоряя и облегчая их выбор.

Схемы с использованием выпрямительных диодов отличаются количеством фаз:

  • Однофазные нашли широкое применение в бытовых электроприборах, автомобилях и аппаратуре для электродуговой сварки.
  • Многофазные используются в промышленном оборудовании, специальном и общественном транспорте.

В зависимости от используемого материала, выпрямительные диоды и схемы с диодами могут быть германиевыми или кремниевыми. Чаще всего применяется последний вариант, благодаря физическим свойствам кремния. Данные диоды обладают значительно меньшей величиной обратных токов при одном и том же напряжении, поэтому допустимое обратное напряжение имеет очень высокую величину, в пределах 1000-1500 вольт.

Для сравнения, у германиевых диодов эта величина составляет 100-400 В. Кремниевые диоды сохраняют работоспособность в температурном диапазоне от — 60 до + 150 градусов, а германиевые – только в пределах от — 60 до + 850С. Электронно-дырочные пары при температуре, превышающей это значение, образуются с большой скоростью, что приводит к резкому увеличению обратного тока и снижению эффективности работы выпрямителя.

Add a Comment

Ваш e-mail не будет опубликован.

Яндекс.Метрика